
Logic Design Pathology and Space Flight Electronics

R. Katz', R. Barto-', and K. Erickson 3

'NASA Goddard Space Flight Center, Greenbelt, MD 20771

-'Spacecraft Digital Electronics, El Paso, TX 79904

_Jet Propulsion Laboratory, Pasadena, CA 91109

Abstract

Logic design errors have been observed in space flight
missions and the final stages of ground test. The

technologies used by designers and their design/analysis
methodologies will be analyzed. This will give insight to
the root causes of the failures. These technologies include

discrete integrated circuit based systems, systems based on
field and mask programmable logic, and the use computer

aided engineering (CAE) systems. State-of-the-art (SOTA)
design tools and methodologies will be analyzed with
respect to high-reliability spacecraft design and potential

pitfalls are discussed. Case studies of faults from large
expensive programs to "smaller, faster, cheaper" missions
will be used to explore the fundamental reasons for logic

design problems.

I. INTRODUCTION

There are many aspects to building reliable space-flight

systems and flying these systems remains a high-risk
venture. Considerations include design/analysis,

fabrication, parts, environmental modeling, test, and
operations. Over the past year (1999) we have seen the
failure of domestic launch vehicles (Titan, Delta, Centaur)

and foreign ones (Japanese, Brazilian, and Russian).
Additionally, a number of domestic scientific satellite
missions have failed. The Small Explorer Wide Field

Infrared Explorer (WIRE) mission was lost because of a
design error [1, 2]. The Mars Climate Observer (MCO)
mission failed because of a navigation error during

operations [3]. The reason for the assumed loss of Mars
Polar Lander (MPL) is at this time not yet determined. All
of these missions were lost with none of the scientific goals

met [It is noted that some science is being performed with
the WIRE spacecraft, using the star tracker as an
instrument]. Well over three billion dollars of flight
hardware has been lost in the last 12 months alone. The

increasing trend of satellite failures, prior to 1999, was
discussed in [4]. Questions are publicly being asked if the

pressures to cut costs and development times has increased
the failure rate and are the increased failure rates acceptable

in the era of "faster, better, cheaper" with many more

missions being launched?
This paper will analyze and discuss failures that are a

result of design errors and their root causes. It is shown in

[5] that design errors account for approximately 25% of all
space-borne failures, from 1962-1988, obviously a quite
significant fraction of all failures. Specifically, the
discussion will concentrate on design failures for digital

logic circuits and their root causes. A detailed examination
will be made of some SOTA design tools and

methodologies. This paper aims to be of use to the

practicing design engineer to improve the reliability of
future designs. As such, the critical nature of this document
is intended to demonstrate general principles. Specific

examples, using real circuits and tools, are given. There is

no generic statement made about a particular design
organization, designer, manufacturer, or product. In fact, it
is found that these faults are quite generic; in many cases,

they appear to be timeless, having appeared continuously
over many years, using multiple technologies.

In the beginning of the space age, digital systems were

designed using discrete devices with no microcircuits
available. Memory systems and flip-flops were quite a bit
different from what we use today, with devices such as

magnetorestrictive delay lines and magnetic cores used in
aerospace systems. Logic, which this paper is concentrating
on, was built from discrete components and the function of

each element was quite straightforward. As an example,
from [6], quad-redundant logic was used to ensure the long-

term reliability needed for the one-year mission. AND

gates, as shown below in Figure 1, were constructed from
resistors and diodes; an inverter used 8 transistors. Flown

later in the decade, the Apollo program used a variety of

technologies. The mission computer for the Saturn V
launch vehicle used discrete circuits [7]. The Apollo

Guidance Computer's (AGC) central processor unit (CPU),
used in both the command module and the lunar excursion

module for guidance and navigation, consisted of three
versions [7]. The first version, derived from a missile

computer [8], used transistor-core logic for the CPU. It was
redesigned later, an early adopter of microcircuits, for the
Block I spacecraft, using several thousand devices, where
each device was a single three-input NOR function. The
Block II spacecraft used advancing technology and was
constructed with dual three-input NOR functions. The

Block II CPU design had increased complexity with respect
to its predecessors, additional instructions were added and

....... 0 • •

• ¢_ . • •

• i "} -

• o .! l •

Figure I. Quad-redundant AND gate fi'om the
Orbiting Astronomical Observatory. An inverter
used 8 transistors.

Ka_ 1 A4

someinstructions,suchasthemultiply,weremademore
efficientwithincreasedlogic.Nevertheless,evenwiththe
increasedcomplexityof theCPUoverthecourseof the
Apolloproject,thenumberofgatestoimplementtheCPU
remainedin the low thousandsandthe deviceswere
conceptuallyverysimple.

Thetrendofincreasingcomplexityoflogiccircuitshas
continuedbothincommercialdesignsaswellasinmilitary
and aerospacedesigns. In the 1970%and 1980's,
microcircuitdensitiesincreasedto the mediumscale
integration(MSI)andlargescaleintegration(LSI)levels,
correspondingto about 102and 103gatesper chip,
respectively.Today'slogic designersfrequentlyuse
programmabledevicessuchas fieldprogrammablegate
arrays(FPGAs)with a capacityof 104gatesper
microcircuit,withmultiplemicrocircuitsusedperboard.
Recently,spacequalificationhasbegunforFPGAshaving
ontheorderof 106gates.Applicationspecificintegrated
circuits(ASIC)devicesand customvery largescale
integrated(VLSI)offerlargercapacities.Logicsystems
todayhaveordersof magnitudemorecomplexity,as
measuredby gatecount,thantheApolloCPUdesigned
over30years.ago.

A fundamentalissueishowthecomplexityismanaged
to permitreliabledesigndespitethe increasedsizeand
complexitiesofthefunctionsperformed.This,infact,isa
corethemeofthispaper.Thereareseveralwaysinwhich
complexitycanbe"managed."

Onesuchmethodis to decomposethesysteminto
subsystems.Thatisstraightforwardandnotaddressedin
detailin thispaper.A reliablesystemdesignrequiresthat
the interfacesbe well understood,the functionsof the
blocksarewelldefinedandproperlyimplemented,andthat
failuresare handledrobustly,accordingto mission
requirements.

Thesecondcomplexityhandlingmethodisprovidedby
theuseof simplecomputer-aidedtools.Computerscanbe
programmedto easilyhandlelargelists,suchasanetlist.
By theuseof theconceptuallysimpleschematiccapture
program,theselistscanbegeneratedautomatically.This
freesthedesignengineerfromalarge,tedious,anderror-
pronetask.Thereisnolossordistortionofinformationin
usingtheCAEtool,whenproperlyconfigured.It isnoted
thatsometoolsandusersrelyonhiddensignalstoprevent
clutterin thediagramandthisisclearlyarisk.

A third suchmethodis abstraction,freeingthe
designer/analystfrom havingto keepall information
togetheratonceforanalysis.Thismethodwill bedivided
intotwodistinctsub-methods.Thefirstsuchtechniqueisto
embedthe so-calledintellectual property (IP) into a

component. This, in the 1970's and 1980's, was achieved by

providing devices with standard functions. In principle, the
designer only needed to understand what the component
did, not how it did it. As a result, the component can be

placed on a circuit board and if configt, red and wired

correctly, would add functionality to the system. Examples

of these types of components include adders, counters, and

microprocessors. More recently, there is the concept of
"soft IP", where a description of the logic function is

supplied from a third party which is fed into a logic
synthesizer, producing a gate level netlist. In principle, this

too requires that the designer only understand how to use
the component, not understand how it works.

The second sub-method of abstraction is by allowing

the designer to work at a "higher level." By the
construction of various abstract layers, efficiency is

promoted, as the designer is provided with a more abstract,

powerful model. As an example, the designer of the OAO
avionics was required to construct his own logic gates; that
is no longer required. Standard functions or macros are

provided giving the designer a rich, virtual set of hardware
to work with. For the most part, the underlying electrical

properties of the components, for a typical design, are not
important and can be ignored. High-performance, optimal
designs quite clearly are an exception. A CAE tool known
as the logic synthesizer takes in a description of a circuit

and produces a detailed design. This powerful tool can
produce arithmetic functions in a single line of high level

code. For example:

Y <= A + B;

Z <= C * D;

where the terms A, B, C, D, Y, and Z are multi-bit

vectors, arbitrarily defined elsewhere in the description.
Another feature is that abstract state machines can be

designed, with the state assignment problem and next-state
equations solved by the CAE software. Again, a high-level
description is used, utilizing familiar and powerful

programming constructs such as CASE and If-Then-

Else. Clearly, these tools have the capability for high

gains in efficiency. Circuits that could take hours or days
for detailed design can be synthesized in minutes. In

principle, these synthesized logic designs are correct-by-
construction.

However, despite improved devices, methods, and
tools, logic errors are still common in space-flight projects,
with "bad circuits" making it into flight hardware, on the

ground and on-orbit. Current space-flight electronics are
expected to perform better and have higher levels of
functionality as compared to designs of a decade or more
before. Concurrently, we see decreased budgets and shorter

development times. Designers must do more with less,
obviously competing constraints. This process is not

always successful and frequently not smooth.
This paper shall study the nature of logic design

failures, its causes, processes, developments, and

consequences. Failures are examined in detail and, layer by
layer, the technologies used in the design and analysis

process are peeled back, and the root causes of each failure
are uncovered. That is, we shall study logic design

pathology.

Katz 2 A4

lI. OVERVIEW OF THE PAPER

The majority of this paper will be to provide an in-

depth analysis of failures. These case studies come from

industrial, government, and academic institutions. The

depth of coverage is not equal for each fault as we intend to

cover a wide range of problems and a detailed treatment of

each is not practical. Some sections will consist mostly of

general, high-level principles that may seem obvious; we
include them but do not dwell on them solely to document

that these mistakes, violating rules that "everyone knows,"

still happen regularly in the industry. The majority of the
discussion will be used for detailed analysis of faults that

are less than obvious. Other analyses, while perhaps

simple, will demonstrate the underlying cause of the fault,

indicating a process problem. Although the technical

problem itself may be trivial, we need to answer the

fundamental question of why these faults make it into flight
hardware. It is noted that many of these problems are found

in numerous systems and quite common.
Appendix A will provide a basic overview of field

programmable gate array (FPGA) technology and introduce
some of'the concepts that factor into the faults that appear in

real systems. A few architectures are discussed, providing

the reader not familiar with FPGA technology a brief

introduction to the technology. An exhaustive treatment of

FPGAs is beyond the scope of this paper and additional

information can be found in [9], which also contains
extensive references. Faults have been divided into three

classes. Section III will cover detailed hardware issues.

Problems here range from the almost trivial to some subtle

issues. CAE software is now virtually indispensable for

logic design and its use, and engineer's reliance on it, is
increasing. Issues with this technology will be covered in

Section IV. This section includes some examples of faults

that are quite difficult to spot by examination. With many

circuits now represented by textual descriptions of their
behavior, an understanding of synthesis and optimization

technology is critical. Section V will discuss causes from a

"high level" - the discussion here will be short and itself be

high level, corresponding to the faults. This section shows
that many "common sense" rules are still being violated and

the results of this process.

III. LOW-LEVEL HARDWARE

A. Special Pins and Pin Terminations

Many of the logic devices in use today have a variety

of special pins. They have a number of purposes: putting a
device in different modes for operations such configuration,

enabling debugging, programming, special voltages, etc.

These pins are either unique to a device family, a

manufacturer, or they may be a commercially accepted
standard such as the IEEE 1149.1 JTAG specification, for

boundary scan test. There may also be differences between

devices in a family, or even withi, a device revision level.

For example, some later revision levels of the RT54SX16

will include the optional TRST* pin. Many modem devices

have adapted the JTAG specification, both for it's original

purpose and others such as user debugging and

programming support. Proper termination of these pins is

critical to the reliable operation of the device. In many

cases improper termination or no termination at all may
result in a condition where the device functions fine in test

but poses a significant reliability risk in flight. The cases

below give common examples of the types of problems that

are seen in flight hardware. A large amount of space is

devoted to this relatively simple class of faults since its

occurrence is quite high and the effects can be severe.

1. Actel MODE Pin

This pin is present in many of the Actel device
families: Act 1, 2, 3, XL, DX, and MX. It is not present in

the SX or SX-A families, their newest antifuse technologies.

This pin, for reliable operation, needs to be held at ground.

The pin is driven high for test, debug, and programming

operations. Nevertheless, many systems have problems

related to the improper termination of this pin.

Several projects have simply left the pin open,
unterminated. They noted that the device would sometimes

appear to "latch up." That is, the device would be non-
functional and consume large amounts of current. The pin

was left open because engineers unfamiliar with the device
did not know the correct termination. In fact, the part did

not latch up, as a latch up state is when a parasitic silicon
control rectifier (SCR) turns and latches on, providing a low

impedance path between the power supply pin and ground,

thus requiring the removal of power to reset the SCR.

Experimentally, devices were tested in a heavy ion beam

with the MODE pin high, as part of an antifuse experiment.
Under these conditions, the part would also appear to latch,

consuming in excess of 800 mA of current, the current limit

setting of the power supply [10].
Another engineer, after testing his design successfully

for months, suddenly experienced a major failure. This

coincided with a change of power supply used in the

bench-level test setup. Troubleshooting went on for several
weeks.

A failure investigation found that the MODE pin was

tied to Vcc while power was applied. For this Act 3 device
the Actet data book states:

MODE (Input) The MODE pin controls the

use of diagnostic pins (DCLK, PRA, PRB,

SDI) . When the MODE pin is HIGH, the

Katz 3 A4

special functions are active_ When the

MODE in is LOW, the pins function as

I/Os.

Why was the MODE pin deliberately tied high? This

flight designer was not very familiar with the device and did
not understand the technology. He did know that the

MODE pin should be held high for testing. Since he was

"testing" his board, he terminated the MODE pin to Vcc
and did not differentiate between testing of the FPGA and

his system. As a result, control flip-flops inside of the

device, described below, powered up into different states,

dependent upon the waveform of the Vcc signal as the

power came up. After proper termination of the MODE pin

to GND, the device again started functioning normally.

One vendor designed a flight subsystem that is being

used on multiple missions. In their design, they

unfortunately left the MODE pin open and operated the

boards. Later, they discovered the improper termination

and simply grounded the MODE pin and concluded that the
devices were still reliable. Unfortunately, the manufacturer

of the devic.e could not guarantee the reliability of the
device as its full behavior is not known under these

conditions. These devices must be considered potentially

overstressed.

Although just a sampling, we see that many projects

have problems with either untermmated or improperly

terminated MODE pins. The engineers designing the
circuits did not understand the technology of the device

they were using, just it's functional, logical behavior. The

MODE pin plays a critical role, as we will discuss now.

Figure 2 is an overview of a typical Actel device. Along

kODE Re_ster_ J
[YI Regis;er

[Y2 Register]

"o _i I_1 _ i ,_
_ N

l I I I/='l I I I "'

[Other Registers]

Figure 2. Overview of a typical Actel
device showing array and special
registers. Holding the MODE pin low
keeps the special registers in a safe,
operational, state.

with the array, which consists of I/O blocks, logic modules,

and routing resources (discussed in greater detail later),

there are several registers. These registers are configured

such that the serial stream clocked in during test and

programming operations will place the part in the desired
state. The data is shifted in by properly sequencing SDI

(serial data in) and DCLK (data clock), when the MODE

pin is driven high. When the MODE pin is low, the

registers are asynchronously driven to a safe, operational

state. With the extra registers, normally hidden from the

users' view, in the proper state, the device may be probed,
while on the user's board. However, other modes are

reserved for programming and test by the manufacturer,

either in the factory or on the programmer. There are also

illegal modes, and it has been demonstrated that several

hundreds of mA may flow between power and ground, if

certain sets of values are loaded into this register. This is
consistent with the results from both the heavy ion test and

users who have left the MODE pin floating. In order to
ensure that the device is reliable after operation with the

MODE pin high, the analysis must show that the anomalous

current didn't exceed any current density limits and that no

local heating could have stressed any devices. To date, this
has not been done.

= !_ I'
, I r

_ ili!Ii

Figure 3. Close up view of a typical
Actel device showing logic modules.
routing resources, antifuses, and pass
transistors used for test and
programming operations.

Figure 3 shows a close up view of the implementation

of a typical Actel FPGA. The pass transistors are used to
make temporary connections and are not used in flight. The

gates to these transistors are driven by the shift registers
described above. If these pass transistors are enabled,

which is possible if the MODE pin is high, then extra
connections can be made. This can result in internal bus

contention, low impedance paths between Vcc and ground,
etc. The risk of a failure in flight is higher than during

Katz 4 A4

groundtest.Clearly,theflip-flopsin thecontrolregister
will besubjectto SingleEventUpsets(SEUs)andthe
MODEpin,if it ishigh,willnotbeabletoclearthem.This
canleadtofunctionalfailure.Oncethetechnologyandrole
of theMODEpinis understood,itsproperterminationis
obvious.Thecasualusermaymisapplythedeviceandhave
it work fine in test. This is an exampleof where
verificationby testis inadequate.For thisreason,an
ohmmetershouldbeusedto verify thatthereis a low
impedancepathfromtheMODEpin to GNDonevery
flightboard.

2. Actel SDI, DCLK Pins

These pins, like the MODE pin described above, need

special handling and are frequently configured improperly.

Dealing with the MODE is quite simple: ground it. The

SDI and DCLK pins can be more complex, since they can,

depending upon the users design, also function as I/O pins.

The user is strongly urged to check the data book for each

device, as these pins are not used identically between

families. Since the purpose of the paper is to help minimize

errors, " we " reproduce Actel recommendations for

termination of these pins [11].

For the A1020 series of parts, the SDI and DCLK pins
are not driven. As a result, if these two pins are unused in a

design (and the software tries to keep them unused), then

they will be floating and may oscillate as a result of a

variety of causes. It has been verified that the SDI and

DCLK pins do float on a sample A1020B, designed with the
2.21 version software. I have also verified for this device

that the PRA and PRB pins, when unused, are tied to a logic
0. Note that the RH1020 is based on the A1020B mask set.

For ACT 2 A12XX devices all unused pins are

automatically programmed as outputs which are driven low,
and therefore may be left unterminated on the board. For
all other Actel devices: A14XX, A12XX XL, and 32XXX

DX, the unused pins are tri-stated but the pad circuitry is

unpowered, which should mean that they may be left
unterminated. Note that the new RH1280 radiation-

hardened device is based on the A 1280XL mask set.

For the MODE pin a hard jumper to ground should be

placed in parallel with the resistor. Using this scheme, if a

problem arises, the PROBE feature of the device would be
directly usable by clipping on the ActionProbe (which

provides direct access to all internal signals). As an

additional reminder, PCB designs should be checked to

ensure that the MODE pin is grounded. Two designs

recently have been found to have these pins floating.

Since the state of the pins may be dependent on
software versions, it is recommended that SDI and DCLK

on all device types be terminated to ground through a
10 kohm resistor.

3. Actel V_,p Pin

The Vpp pin present in many of the Actel device
families is dedicated for programming, using a high voltage

source. One spacecraft subsystem left this pin floating in

addition to not being positive that the MODE pin was

grounded. The specification requires that the pin be tied to

Vcc for proper operation. However, no functional problems
were observed. Examining the device's implementation in

detail, there is a diode with the anode connected to Vcc and

the cathode connected to Vpp. A grounded Vpp would be

troublesome although it appears that a floating pin should

not cause any immediate trouble. Some analysis was done

and breakdown tests run on sample devices, as it was a

concern that the pin could "charge up" during flight. While

it was felt that the circuit would probably be OK, there was

no guarantee that the application would be satisfactory.

Therefore, late in the program, the spacecraft was

disassembled, the Vpp properly connected, and the MODE

pin's termination verified.

4. Xilinx MODE Pins

There are two issues with the MODE pins, used for

determining the configuration mode of many device types.
In the XC4000 series, the internal pull-up resistors

guarantee a logic high level. However, after the device is

configured, the resistors are disconnected and the pins are

floating. This can cause a failure if the device is

reconfigured. Either external pull-up resistors or a
modification to the bit stream can prevent this problem [12].

Additionally, problems have been reported related to the

noise sensitivity of the MODE pins when internal resistors
are used for termination; the resistors can have values up to

100 kf2 [13]. The use of external resistors of lower value

can be used to prevent problems.

5. Unused lnputs

In an Actel A1020 application, the design used very

few of the I/O pins for each of the devices in the system.
That left a very large number of "no connects" in the

subsystem. The designer, an experienced engineer,
terminated the unused leads as one would for a typical

CMOS device: they were grounded. This, unfortunately,

led to a potential stress situation and added to the magnitude

of the start-up current transient.

To properly understand this configuration, we need to

understand the design software and the hardware

implementation. By default, the back end software will

program all unused device pins as outputs, driving a logic

'0'. This would imply, from a logical point of view, that a

hard ground of the unused I/O pin would be redundant,
although the intent was to ground an unused input.

However, from a physical point of view, we know that in

Katz 5 A4

Act 1 devicesinputsandoutputsmayactuallysource
currentduringthepower-onperiod[14]. Lookingintothe

implementation of the AI020, we know that the device is

configured by antifuses which, when programmed, make

connections in the routing channels. Since the antifuses are

programmed with a voltage high enough to destroy ordinary

transistors, high-voltage isolation FETs are used to protect

the device during programming operations. In operation,

the isolation FETs are biased ON from a charge pump,

whose output is higher than Vco to ensure that a good logic

'I' is transmitted throughout the device. During startup,

there is some time needed for the charge pump to start and

to charge the large number of FETS. The basic architecture

is shown in Figure 4, where we see the isolation FETs

protecting input and output transistors for each module. In

the case of the I/O cells, the input to the cell is not

guaranteed to be properly driven, resulting in a transient

situation where the output driver is not under control. This

can cause an UO module, configured either for input or for

output, to source current during the start-up transient. Note
that this behavior is not a fundamental nature of all antifuse

FPGA devices. Act 3 devices behave differently and tend

to put the outputs into a tri-state condition [14]. Some
future models of SX and SX-A devices may have

configurable cells, such that the pin will be driven either

high or low by a resistor, during the transient.

Figure 4. Charge pump and isolation FETs for an
A I020 FPGA. The isolation FETs protect the
transistors from damage during the programming
operation, when high voltage is applied to the selected
antifuse. The charge pump puts out voltage to bias the
nFETs on during normal operation. During the
startup transient, the device is not guaranteed to
follow its truth table. For the case of an I/0 module,
pins configured as inputs or outputs can source
current during the transient.

6. IEEE JTA G 1149.1 Pins

The IEEE Standard Test Access Port and Boundary-

Scan Architecture [15] is a technology that is being put into

many modem microcircuits. Commonly referred to as
"JTAG," it was originally intended to support board test. In

practice, it has been used for other functions such as

programming, debugging, and built-in self test. The

interface uses a small number of pins, TCK, TRST*, TMS,

TDI, and TDO. The TRST* pin, used to hold the test

circuitry in a reset state, is optional and a microcircuit can

be compliant with that pin not implemented. For many

devices, particularly microcircuits designed for the

commercial market, the TRST* pin is not implemented,

saving an I/O pin for other uses. Several problems have
been seen with the use of devices implementing this

standard, as discussed below.

Figure 5 shows a circuit from a flight instrument. The

microcircuit being used did not implement the TRST* pin

so a clock was provided to the TCK input. While the JTAG

specification requires that, upon the application of power,
the device's test controller enters the

TEST-LOGIC-RESET state (which keeps the test logic in

reset and the device functional), a single event upset can
cause the device to enter a test mode. The JTAG

specification ensures that microcircuit will move back to the
TEST-LOGIC-RESET state after no more than 5 clocks on

the TCK pin, ifTMS is held high. Logically, this appears to

be a good circuit.
It is known [16] that in some circuits with JTAG, very

high currents can be consumed along with a loss of

functionality when irradiated with heavy ions. Test data has

shown that even with a relatively high frequency dedicated

clock for TCK, system control may be lost and the device

draws excessively high currents. For the test setup used for

this experiment, the programmed current limit of 800 mA
was reached. [16] gives an overview of the JTAG 1149.1

specification with an emphasis on its application to

operation in the heavy ion environment.

There is another logic error in this flight circuit. A

block diagram of the implementation of an I/O module in a

JTAG-compliant microcircuit is shown in Figure 6. Here

we see that the output driver is under control of the JTAG

data path, essentially a shift register. If a false command
enters the JTAG system, then an output driver may be

turned on, although the user has intended this to be an input

OSC

> CLK

> TCLK

Figure 5. User circuit with a "JTAG"-compliant
device without the optional TRST* pin. An
external clock is used as input to TCK to ensure
that the TAP controller e,ters the
TEST-LOGIC-RESET state after five TCK cycles.
Logically correct, this circuit has several flaws.

Katz 6 A4

To Next Pin

T
/

Out Enable

/
o T

Data Out

-,--' T
raO

Data In

T
JTAG DATA PATH

Figure 6. Block diagram of the control of a

JTAG-compliant I/0 module. The JTAG data path is

a shift register under the control of the TAP

controller. If the TAP controller is taken out of the

TEST-LOGIC-RESET state by a heavy ion, garbage

values may be applied to the control of the I/0

module. This may result in changing a system-level

input pin into an output pin.

pin. This can lead to system failure since the device, when

the JTAG gets upset, can turn the CLK input into an output

driving low. For most devices, this will clamp the board-

level clock net close to ground, prohibiting the CLK signal

from clocking the TCK pin. The system has locked up.

One potential problem with the use of JTAG-compliant

microcircuits is a floating TRST* pin. When TRST* is

driven low, the test controller is held in the

TEST-LOGIC-RESET. When high, the controller is free

to leave this "home" state, either by command or by an

SEU. A careful reading of [15] shows that when left

unconnected, the TRST* pin will behave as if driven by a

logic '1'. This is another example of logic that is not

testable. Since there is an internal power-on reset detector

in JTAG-compliant microcircuits forcing the TAP controller

to the TEST-LOGIC-RESET state, operation with the

TRST* pin high or low is indistinguishable in ground test.

For high-reliability applications, it is critical that the TRST*

be held low and verified. This is critical even for

applications that do not expect a significant number of

SEUs. For example, one user (jet engine controller) with a

JTAG-compliant microcircuit found that the TAP controller

would leave the TEST-LOGIC-RESET state in ground test

operations. The termination of the TRST* pin, when

present, should be verified with an ohmmeter for every

device in a flight system.

B. Clock Skew

The circuit shown in Figure 7 is one that is commonly

seen in board designs as well as FPGA designs, where the

clock buffer shown is a typical buffer, not a dedicated low-

skew driver for FPGAs. The circuit has the general

principle that two flip-flops have little delay between stages.

This same structure can occur in counters and other circuits.

Another variant is shown in Figure 8, where a large clock

load is driven by several buffers by constructing a clock

tree. Both of these circuits are flawed. They may operate

fine on the bench for a particular unit, but may fail when the

device is re-routed, another device programmed, another lot

of parts is procured, or the operating conditions change.

This circuit structure is typical of those designed by

experienced engineers new to the FPGA technology.

--E> /
Normal Routing Resource

Figure 7. Shift register clocked by a local routing

resource. The use of a high-skew clock can result in

circuit failure from hold time violations.

Figure 8_ Long shift register with clock load driven by
a clock tree. This structure in an FPGA adds clock

skew from different delays to the buffers, buffer delays,

and buffer loads. Buffer loads include not only the

clock inputs, but the resistance of the connection

elements and the amount of capacitance from a

variable length routing segment.

The following sections will analyze this class of circuits

and discuss the failures that are seen in flight electronics

and their causes. Clock skew may also be caused by CAE

software, discussed in a later section.

1. Definitions and Discussion of Terms

Clock skew is the difference in arrival time of the active

clock edge between two sequentially adjacent registers.

Sequentially adjacent registers are two registers that only

have logic and/or interconnect between them. Arrival time

is the time that the active edge "triggers" the register.

Propagation delay time is referenced at an arbitrary level

(voltage). Additionally, the arrival time is also a function of

Katz 7 A4

the slew rate of the signal that is driving the clock at the

destination of the signal, as well as the receiver's logic

threshold. A complete analysis will assume that the slew

rate and logic thresholds will fit into a window, and as such
have a maximum and minimum associated with them. In

addition, these parameters, like others, can vary over the

course of a mission because of the effects of operating

lifetime, stress, and radiation exposure. Short term effects

such as temperature and voltage must, of course be
accounted for.

For proper analysis, the simple circuit shown in

Figure 7 is modeled as shown in Figure 9. TROUT E and TSKEW

are a function of resistance, including that of antifuses (or

pass transistors) and capacitance as well as loads. For
antifuse-based devices, the resistance of antifuses will vary

from antifuse to antifuse. The capacitance is a function of

the placement of the logic modules and their routing. For

reliable circuit operation, under all conditions, we must
have:

TCQ + TROUT E > Tsr.E w + TH (1)

Note that delays are a function of the trigger point of an

input, which is a function of the logic threshold, a parameter
that varies under different operating conditions.

TCQ TROUTE TH

TSKEW--if-

Figure 9. Orcuit used for analysis of clock skew
timing using local routing. A late arriving clock at
FF2 can cause a hold time violation and circuit

failure. ,4 model for the circuit topology shown in
Figure I would include the skew introduced by the
extra buffer and the routing of the signal to each of the

buffers.

2. Circuit Analysis with Clock Skew

This section will discuss the analysis of clock skew. As

the discussion proceeds, problems from a number of

projects will be analyzed. While the discussion is focused

on a particular class of FPGAs, the concepts are general.
Clock skew must be calculated for each pair of

sequentially-adjacent flip-flops for accurate results. It is

tempting, when using a static timing analyzer, to group sets
of flip-flops together. Then the analysis may be performed

in one step, using the "set" as opposed to calculating the

hold time for each pair of sequentially-adjacent pair of

flip-flops. Clearly, this technique will be overly
conservative since worst-case skew can only occur between

sequentially adjacent pairs. If rain and max delays are taken
from this set, the min and max values may not be from

sequentially adjacent flip-flops. As a result, the calculated

skew may not be physically present and affect any real

signals. Performing analysis on each pair of flip-flops is

very labor intensive but is necessary for accurate results.

In calculating clock skew for hold time analysis, the

worst-case situation occurs when the source flip-flop is

clocked with the earliest possible clock and the sink flip-

flop is clocked with the latest possible clock. Therefore, the

clock path analysis to the source flip-flop should be
calculated as a minimum. The clock path analysis to the

sink flip-flop should be calculated as a maximum. Simply

setting the analysis conditions to "worst-case," usually low

voltage and high temperature will produce an incorrect
answer. There are several reasons for this. First, by setting

the conditions to maximums makes the implicit assumption

that the maximum values for all delay parameters is the

worst-case. Looking closer at equation (1), the worst-case

occurs when Tco and TROUT E are minimums and Ts_w is a
maximum. Obviously, for minimums, setting the

conditions to "max" will not give a proper analysis. TcQ and

TH are functions of the silicon process and conditions. A

closer look at TROU-rE and Ts_w, however, along with the

model m Figure 9, shows that the minimum and maximum

antifuse resistance needs to be included in the analysis. The
resistance of an antifuse is a variable that falls within a

range of values. Since each antifuse is individually

programmed, we can not assume that the resistance of
different antifuses will track.

Figures 10 [17] and 11 [18] show several antifuse
resistance distributions from two manufacturers. Figure 10

is data using an ONO antifuse. To date, these have been the

most popular antifuses used in space-flight systems and are
used in FPGAs and PROMs. The data in Figure 11 is for an

amorphous silicon antifuse, one type of metal-to-metal

antifuse, which typically have close to an order of

magnitude lower resistance. The use of this class of

antifuse is growing with space applications in PALs,

PROMs, and programmable substrates, as well as FPGAs.
The resistance distributions are wide enough that they can

affect critical timing for hold time. In fact, this variation

has led to failures in flight hardware.

Of course, doing full min-max calculations for the

entire delay paths is unrealistic. Two flip-flops, buffers, etc.

on the same chip will not see large differences in supply

voltages, say 4.5 VDC and 5.5 VDC. Similarly, with

respect to temperature, we won't have one element at -55 °C
and another at +125 °C. Therefore, a reasonable

assumption is that two devices near each other operating at

the same frequency with similar loads will have similar

Katz 8 A4

6O

c 4O
0

..Q

_ _0

a

_ 2o

0

300 400 500 600 700 800 900

Resistance

Figure 10. ONO antifuse resistance distribution for a 5 mA
programming current. The worst-case analysis must take
into account the range of antifuse resistance when doing
min-max calculations. Antifuse resistance varies from fuse
tofuse and does not "track" over a lot of parts.

voltages and temperatures. Another factor in min-max
calculations is process variations. It may be safe to assume

that two devices on the same chip will not represent fully

different comers of all acceptable process parameters. Of

course, we most definitely can not assume that two devices

side by side will have identical results. Parallel buffers will
have differences and that must be accounted for. However,

there is no database available that will give transistor to

transistor variations on the same chip so the more
conservative numbers must be used. Additionally, parallel

buffers may have different loads, even if they appear to

have the same number, based on the number of flip-flops on

a net, as the Actel FPGAs use a variable length routing

segment architecture, which can contribute to imbalance.

Looking again at some existing analyses, we see the

need to properly select the proper operating conditions. For

example, the "worst-case" conditions of low voltage and

high temperature are often not the worst-case conditions for
hold time. Frequently, cold temperature, high voltage, and

best case processing is. Another factor is the so-called

"speed grade" of the device. For Actel devices, the speed

binning is done by ensuring that the binning path does not

exceed a maximum specification value. As a result,

particularly for military and aerospace programs, devices

with a faster binning path can be marked as a slower device,

as the marking is fully specified in the SMD or the SCD.
The situation is similar for Xilinx devices, another supplier

of space-grade FPGAs.

Figure 12 shows one technique that was used to ensure
that adequate hold time was met on a high-skew clock net.

Unfortunately, it is not guaranteed to work by construction.

Flight hardware has failed with sequentially adjacent

flip-flops separated by a logic module. This circuit will be

revisited later with respect to the use of design software.

25

iS

s

o

V_tLink RIlII_Ir'¢ ! (Ohm)

Figure 11. .4morphous silicon antifuse
distribution for a O.65 _m technology.

resistance

•......... _ Fl1ior_

High-skew Clock

No "PRESERVE"

....

Figure 12. Attempt to eliminate clock skew problem.
Careful timing analysis is needed to ensure that the added
buffer will have sufficient delay to guarantee adequate hold
time. Circuits using this configuration have failed because
of excessive clock skew.

The designer/analyst must carefully analyze paths that

have sequentially adjacent flip-flops, clocked on the same

edge, which reside on a high-skew clock net or a clock tree.
This is a slow and tedious process, and the analysis must

ensure that the worst-case paths are adequately modeled. A

full discussion of design techniques will not be presented

here. However, in general, use of low-skew clock networks

is recommended in conjunction with proper timing analysis.

The hold times can be adjusted, if necessary by a variety of

techniques such as component placement or appropriate

setting of the clock balancing parameter [note that this
feature, for A1020 and A 1020A devices, is not available in

current releases of software]. Opposite edge clocking can

be used reliably, trading off one concern, clock skew, for

another, clock duty cycle control and perhaps logic

resources. Two-phase, non-overlapping clocks can also be

used. The clock generator can be constructed using high-

skew clock resources with a two-stage twisted ring counter

clocked on opposite edges and a few gates. Then, simple

latches can be used for implementing structures such as

shift registers, which is very efficient in architectures such
as Act 1.

Katz 9 A4

3. Chip-to-Chip Applications

The above discussion analyzed clock skew within an

integrated circuit. However, a circuit that looks acceptable
at the board level schematics, as shown in Figure 13, can

have hold time problems. The key parameters here are the

CLK---_Qmi, of the source device, tn of the sink device, and

CLKp_.---_CLKmod,_m_ of the sink device. As in the on-chip
case, the worst-case is when the data moves fastest from the

source chip and the clock is "late" to the sink chip. Note
that the transition time of the clock driver and the logic

thresholds of each device must also be included in the

analysis as was done in designs using the old CD40xxB

series devices, where parallel clocking was often a problem.

Figure 13. Clock skew between chips. Depending on the
device selected, the design, and the place and route, this
circuit may not guarantee proper hold times. Some
architectures use dedicated I/0 flip-flops and clocks to
ensure hold times are met while others achieve this by
circuit design. The architecture may have a programmable
delay element (Xilinx) in the data path that is enabled for
sequential inputs for reliability and disabled for high-speed
combinational inputs. Lastly, with some devices, parallel
clocking may not be reliable and the opposite clock edge, or
a different clock, should be used.

The analysis and circuit designs differ, depending on
the device selected. The place and route as well as the

configuration of each device, if FPGAs are used, can also

be a factor. For example, using Act 3 technology, there are

flip-flops in the I/O modules and a dedicated clock that

guarantee 0 ns hold time and reliable operation. Of course,
skew between the dedicated I/O clock and the low-skew

clock network used for the logic must be carefully analyzed,

as skew effects are not guaranteed to be a problem. The I/O

module latches in Act 2, for example, guarantee a tsu of

0ns, not a tn of Ons. Some architectures, such as the

CQR4000XL series, incorporate programmable delay

elements in the I/O module along with I/O block flip-flops.

When a sequential input is used, this delay guarantees

adequate hold time; for a combinational input, the delay is

bypassed, providing maximum speed. Lastly, with some

devices, parallel clocking may not be reliable and the

opposite clock edge, or a different clock, should be used.

C. Start-up

Circuit performance during the start-up transient can be

critical for many military and aerospace applications.
Information on device's behavior is sometimes not obvious

and manufacturer's information on this condition is either

not prominent or located in application notes. There have
been failures in this area and the following sections will

review circuits and provide some insight into device

behavior.

1. FPGA Outputs

The circuit in Figure 14, at the schematic level, looks

like a good circuit with no obvious design flaws. Modern

programmable devices are CMOS and many engineers

expect them to be well behaved during power-up, as CMOS
circuits will function at quite a low supply voltage. For the

FPGA used in this particular circuit, the A1020, the

implementation of this device result in some unexpected
behavior.

FPGA

Output
Critical

System

Figure 14. FPGA output start-up transient interfacing to a
critical system. The behavior of an FPGA during the start-
up transient can be either controlled or uncontrolled,
depending on the architecture of the device and specific
circuit design. A transient output can cause critical events
to happen, such as switching relays, firing pyrotechnic
devices, etc.

Referring to Figure 4, we see the basic connection
scheme for this class of FPGA. The isolation FETs, for

protection during programming are biased ON during
normal operation, with the bias supplied by an internal

charge pump, that takes a finite time to start and to charge

the parasitic capacitance. However, as shown in Figure 15,

the device outputs can be uncontrolled just after Vcc is

applied. It is critical to note that the top two traces in the

Figure 15 will not have the same waveform each time

power is applied. For example, it was found that repeated

applications of power for this particular circuit would result

in the top two traces remaining close to zero volts. After

letting the device set, unbiased, for a number of hours, the
waveforms in the figure would repeat. This example shows

that the design must be properly analyzed and can not be

qualified by test. For critical signals controlling relays,

Katz 10 A4

Cover

mrlTI

Wcc

rm---- |

5,000 II O_OCO I ,'50CO =S

1 2 C_ _ _' 2 CO _ 3 2 _ V_ E_gI

2 £zsCO

: oo vJelv

2 ,' O0 v/el,

=, _ coo

o CO:r Im/¢

Figure 15. Startup characteristics of an AI020

FPGA with a power supply rise time of 20 msec

(10% to 90%) after being powered off for 24

hours. The horizontal scale is 4 msec per

division. Cover and Arm are outputs at 2V/Div

and are driving high m this test run. Vcc is
scaled at 5V/Div.

FPGA

C POR*

pyrotechnic devices, etc., a seemingly innocent circuit can
cause mission failure.

2. Power-on Reset (,°OR) Detector

Figure 16 shows a commonly used topology for a

power-on reset circuit. There are a number of
considerations for this class of circuit.

First, one must consider a proper value of the time

constant. As described below, in section 3, crystal

oscillators often take a relatively long time to start, perhaps

50 ms or more, which is dependent on the crystal oscillator

used. Secondly, the rise time of the power supply must be

known and, loosely speaking, the time constant of the POR

circuit must be long with respect to the power supply's rise

time. This rise time typically ranges from 0.1 ms to 100 ms.
Slow rise times are often desirable to limit the in-rush

currents into capacitors and to meet EMC requirements.

Lastly, for many FPGA devices (and this example was
taken from an AI020 design) there is a t'mite start-time.

This time is needed for the charge pump to start and to

charge the large internal capacitances associated with the

gates of the isolation FETs. It is necessary that the

power-on reset circuit's time constant must be greater than
the start time for the slowest device in the system.

Secondly, it is often good practice to place a diode
across the resistor in Figure 16, with the anode at the

junction where it meets the capacitor and the cathode at the

Vcc supply. This serves two purposes. First, it helps the

circuit to respond to short dropouts. Secondly, it provides a

discharge path from the bulk capacitance so that the stored

charge does not flow through the FPGAs input protection
diodes (most models) during power down.

A series resistor is often required. Most importantly,

this protects the inputs of the FPGA during capacitor

discharge when power is removed or if a short (perhaps

Figure 16. A typical Power-on reset circuit.
Considerations for good circuit design include a time
constant long enough to allow crystal oscillators and
FPGAs to start, protection against capacitor discharge
through the ESD protection diodes, fast response to voltage
drops, transition time limitations of the inputs, and
knowledge that some FPGAs may source current during the
start-up transient. Additionally. many FPGA types will not
respond to their inputs while they are being configured or

temporarily) grounds the Vcc bus. Some have

recommended this as a way to prevent the capacitor for

charging as a result of the current sourced by the input

during the startup transient. The lJO module is not

controlled during power up (see section A5) and can

temporarily act as an output driving high [14]. A buffer

between the analog node and the FPGA is a better solution.

Taking a closer look at the characteristics of an input

circuit, it is noted that the high gain transistors often will

appear to oscillate when the transition times that they see
are slow. For example, many FPGAs have input slew rate

requirements of 500ns measured from 10% to 90%.
Measurements have shown that many flight parts will
"oscillate" under those conditions. Nevertheless, any POR

circuit with a reasonable rise time, which is often more than

lOOms, will be inappropriate for most FPGA inputs.

Although many FPGAs have a small amount of input

hysteresis, it is insufficient. A buffer with a hysteresis input
is recommended.

3. Synchronous Reset

Figure 17 shows a synchronous reset topology. One

advantage of this structure is that noise or glitches will, for
the most part, be filtered out since the signal is only

sampled on the rising edge of the clock. A closer look at
the characteristics of these components is necessary to

ensure proper operation. Of course, as we have seen, the

Katz 11 A4

1000¸

r,,_,

._ J;

_U _: - 'iF" : T

! 'J _ - _ = .;

Figure 17. Synchronous reset topology. This circuit
structure minimizes sensitivity to noise and glitches by
avoiding the use of asynchronous inputs on the flip-flop. It
will not start assert the reset until both the FPGA and the
oscillator have "started."

FPGA may not follow its truth table on the application of

power and proper sating must be handled at the system
level. This section will focus on the characteristics of the

oscillator since this circuit will obviously not assert reset

internally until the oscillator starts.
As discussed previously, crystal oscillators do not start

instantaneously. For examples, start times are a function of

the crystal, frequency, design, and operating conditions.
For the flight system analyzed, we characterized a set of

flight oscillators for another parameter often not seen - the

rise time of the power supply.

Figure 18 shows how the power supply rise time can
affect the start time and waveforms of a Class S oscillator.

This data was taken at 10°C, the estimated temperature of

failure of the flight system. In this flight system the rise

time of the power supply was deliberately slowed by the

design engineer. The oscillator did not have a specification
for start time nor was the power supply rise time shown as a

critical parameter. The engineer was unaware of the start
time characteristics of this device and the effects on the

POR circuit were not properly analyzed.

Start time data was taken on spare oscillators and is

summarized in Figure 19. The frequency of this device is
low, 200 kHz, and it has a large start time, particularly for

long but reasonable power supply rise times. It was shown
that the start time was a linear, as a function of rise time.

Synchronous reset can be reliably used when the

system level design takes into account the oscillator start
time.

, r.,. , r_,-

I ms/div 10 ms/div

tRISE = l ms tatsE = 50 ms

Figure 18. Flight oscillator start time samples. The effect
of power supply rise time on the start ttme of these Class S
oscillators is easily seen.

_ loo /

f
i i i

,50 100 1:50 200

Power Supply Rise Time (msec)

Measured from lOe/oocJO%

Figure 19. Summary of start time performance of a Class S
[light 200 kHz oscillator as a function of power supply rise
time. There exists, for this oscillator, a linear function
between power supply rise time and start time.

D. Metastable States

1. Introduction

Normally a flip-flop is in one of two states; either

storing a logical '1' or a '0'. These states are stable as

flip-flop elements employ positive feedback. In properly

designed systems, all flip-flop parameters are met and the

device operates normally. The essential parameters are

setup time (tsu), hold time (tw), and pulse width (tw), with

the latter applicable to clocks, presets, clears, jam loads, etc.

If these parameters are not satisfied, the flip-flop may go
"metastable." This would happen, for example, when an

asynchronous input is fed into a flip-flop without meeting

% or tH, or when a runt pulse is input into the clock or an

asynchronous preset or clears. Despite being a
well-understood phenomena, many designers are still not

aware of metastability and their systems are subject to
intermittent failures. These circuits are difficult to "qualify

by test" since the failure rate may be low with respect to test
time or an intermittent failure may be falsely attributed to
another cause.

Device behavior in the metastable state may manifest

itself as a device's output being a non-logic level, an output

switching and then returning to it's original state, or an

increased CLK --_ Q delay. Theoretically, the amount of

time a device stays in the metastable state may be infinite.

In practical circuits, there is sufficient noise to eventually
move the device out of the metastable state into one of the

two legal ones. However, this time period may be large

with respect to the available timing slack in the circuit
resulting in a system failure. Factors that affect a flip-flop's

metastable "performance" include the circuit design and the

fabrication process. By allowing sufficient settling time, the
Mean Time Between Failure (MTBF) for a well-designed

system with asynchronous inputs can be made extremely

Katz 12 A4

lowandreducedto acceptable levels. This is possible since
resolution time is not linear with increased circuit time and

the MTBF is an exponential function of the available slack

time. This can be seen in the following equation:

MTBF =

K 2 ot
e

K | e F clocke Foata

where t is the slack time available for settling, KI and

K2 are constants that are characteristic of the flip-flop, and

Fck_k and FD=_ are the frequencies of the synchronizing
clock and asynchronous data. By this equation, it is clear

that an increase of 't' has an exponential effect on the

MTBF. The constants accounting for the key characteristics

of a flip-flop's metastable behavior are the size of the
window (usually sub-nanosecond) and the time to exit the

metastable state (which is a function of the gain-bandwith

product of the device).

2. Example - MTBF Calculation

Sample results were calculated for Chip Express

CX200! technology, based on their flip-flop parameters and

example in the CX Technology Design Manual. The

CX2001 series uses a channeled module architecture (gate

array) with each module consisting of three 2:1

multiplexors and an AND gate. This sample calculation
uses a 50 MHz clock, a 10 MHz average incoming data rate,

and the available extra settling time is the independent

parameter. The results are shown in Figure 20.

A number of circuit topologies can be used to properly

synchronize an asynchronous input. Optimally, the

problem can be solved by proper synchronous system

design that eliminates conditions causing metastable states.

Unfortunately, that is not always possible.

Sample Metastable Time Data

CX2001Technology
50 MHzdock, 10MHzdatarate

25

o

2O

15

10

$

0

-5

-10

-15

, elers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sla_ TPne (ns)

Fig_re 20. MTBF as a function of available slack time.
System reliability is an exponential function of the settling
time made available for metastable state resolution.

The data concerning metastable state performance

available to the design engineer varies. Some

manufacturers provide data for each flip-flop in their

library. Certain vendors provide data on only a particular

family while some do not support the design engineer at all.

When analyzing circuit performance, careful attention

should be paid to the test conditions, as temperature and

voltage, for example, can significantly affect the metastable

state parameters. Wide margins are recommended.

Fortunately, for systems of moderate speed, modem

hardwired flip-flops have excellent metastable performance,
with short resolution times.

3. Example - Inadequate Synchronizer Circuit

Figure 21 below shows a common synchronizer

implementation. In this situation, an asynchronous event

triggers FF1 whose output is synchronized to the rest of the

system, generally as an input into a finite state machine

(FSM). This circuit may fail, however, if FF2's output first
rises and then falls before settling into the cleared state.

That transition, however, may be enough to satisfy the

required pulse width of the asynchronous clear input of

FF 1, clearing the event's notification.
Yet
C

FF1 FF2

.... t
7. ; } r- L •

Figure 21. Inadequate synchronizer circuit design. EVEN7
is asynchronous to SYSCLK resulting in possible metastable
behavior. The output of the synchronizing flip-flop (FF2)
may clear the latching flip-flop (FFI) before FF2 is stable,
resulting in a loss of the incoming event.

E. Asynchronous Circuits

1. Introduction

Most modem design methodologies preach strict

synchronous circuit design techniques. Religiously, they

insist on all flip-flops being clocked by the same low-skew

clock and triggered by the same edge. Additionally, use of

asynchronous inputs to flip-flops, such as the clear, should

be limited to a single, chip-wide, reset signal.
Realistically, these goals are frequently not achievable

or practical. For example, there are asynchronous signals
and there are synchronizer circuits to deal with them. Often

these circuits require that an asynchronous clear be used and

Katz 13 A4

that the clockbe triggeredby a local signal. For
performanceand/orpowerreasons,anasynchronousripple
countermayprovidepracticalhigh-speedeventcounting
withminimalpowerdissipation.Anotherexampleis the
useof asynchronouslysampledgraycodecountersby a
datacollectionsystem.Therearemanyexampleswhen
asynchronouscircuits"makesense"and areperfectly
reliable.However,it found,asshownin theexamples
below,thattherearemanyunreliableasynchronouscircuits
stillbeingdesigned.

2. Asynchronous Clear

The circuit shown in Figure 22 improperly uses

asynchronous logic. The intent of this circuit was to

generate a small pulse after the completion of two events.
Each event was given a flip-flop to set. After the output

pulse is generated, triggered by a third asynchronous input,

at point A in Figure 22, the two flip-flops would be cleared

and await the next pair of events.
First, it is clearly seen that the output pulse width

consists of three gate delays. While careful analysis may

show that that is acceptable in some technologies, it is a

structure to be avoided. In general, pulse widths should be

made with clocks, not gates. Note that the delays are highly

dependent on the "place and route" process and the analysis
must be repeated for each iteration of this algorithm.

Analysis did show, however, that the small output pulse

would not be guaranteed to clear both of the flip-flops

reliably. It appears that the output of the NAND gate will
reach each flip-flop clear at the same time. However, as

shown in earlier sections, additional antifuses and different

parasitic capacitances from variable length routing circuits
can make the delays significantly unequal. In this particular

case, it was not possible to prove that both flip-flops would

be reliably cleared and the circuit was redesigned.

3. Asynchronous Decoding - Terminal Count

The circuit shown in Figure23 uses the TCNT

(terminal count) of a vendor-generated counter macro as
clock. An examination of the macro's logic, shown in

Figure 24, shows that its implementation is similar to that of
the 54LS161, where there is no gating and no guarantee of a

"glitchless" signal. While the 54LS161 gated the TCNT
with the ENT input, the circuit in this macro is always live

and is a simple combinational decode of the flip-flop's

outputs. An examination of count sequences shows the

problem.
01111111111111

10000000000000

IIIIIIII011111

IIIIIIIII00000

m
i

vCC

t

F
[

v c c
q_

1
' I

C L K iY i

Figure 22. Improper use of asynchronous clears. The

output of this circuit has a pulse width determined by

propagation delays. Additionally, the pulse may have

insignificant width to guarantee that both flip-flops are

reliably cleared.

The outputs of the flip-flops of the counter can not all

reach the decoding logic at the exact same time (idealized

circuit). Certain sequences of states, such as those shown

by the arrows, exist where the decoder can momentarily see

"all 1%" and output a runt pulse.
There are certain logic structures that permit reliable,

"glitchless" decoding. An example of this is the Johnson

twisted ring counter. Note that implementations of this
structure, since it does not utilize all 2" possible states, must

incorporate lockup state detection and correction for critical

applications.

CDUNT24

ENABLE

i

--ciACLR

....... _-CLOCK

i

i Used as a clock

TCNT

o[_3:o]

Figure 23. High level view of a manufacturer supplied

macro. The use of the terminal count as a clock may result

in circuit malfunction since it may "glitch. "

Katz 14 A4

4. Asynchronous Decoding - Binary Counter

The circuit shown in Figure 24 will fail for similar
reasons as those discussed in Section 3, above. The

decoding of a binary counter without qualification can

result in glitches being generated. In the general case, when

the counter rolls over, that is, all bits transition, any count

can be momentarily decoded. The decoder's output should

be used as an enable for a flip-flop. Then, the enable will

effectively operate a multiplexor and select between

feedback from the flip-flop (hold) or input new data. FPGA

macros or hard-wired flip-flops frequently offer an enable

function exactly for this reason.

Examples similar to that shown in Figure 24 have been

seen using both synchronous and ripple counters and neither
class of circuits could be shown to have adequate reliability.

CL DCK "C_T_-

Figure 24. Asynchronous
counter.

Decode
Logic

Used as a clock

decoding of a synchronous

F. Interfacing Logic Blocks

Frequently there is a requirement to interface different

logic blocks, powered by independent sources. Examples
include the isolation of redundant circuits, power saving

modes, etc. While traditionally done with bipolar circuits as

shown in Figure 25, CMOS devices are often used in the

same configuration. For most powered off CMOS devices,

their I/O pins present a low-impedance path from the I/O

pins to the VDo rail, through either protection or parasitic
diodes. Clearly, this is not a desirable situation.

Additionally, the two supplies would have to power up and

down simultaneously to prevent one block from loading the

other's supply.
Certain CMOS discrete devices are acceptable in this

configuration. For example, the CD4049UB and the

CD4050B have special input protection networks so that

their inputs remain high-impedance with the power
removed. Care must still be taken with the outputs and the

use of busses and pull-up resistors. UTMC, for example,

has higher speed devices intended for this application.
Some of the military-specific foundries offer special I/O

cells for functions such as power isolation and cold sparing.

VCC-A

, Backplane

VCC-B

Figure 25. Interfacing logic blocks powered by individual
power supplies. Most CMOS devices present a
low-impedance on the I/0 lines when powered off Some
new devices incorporate special circuitry for this situation.

FPGA vendors, however, typically do not. One version of

the RT54SX series (under development) will support power

isolation and cold sparing.

G. Interfacing Voltage Margin

Proper TTL to CMOS interfacing was a problem in the
1980's when many CMOS devices had a logic high input

threshold (Vm) of 70% of Vt, D or typically 3.5 VDC. This

problem still occurs. Examples include Tl'L-compatible
oscillators and "TTL-compatible" CMOS. Note that in

some CMOS devices, the definition of "TTL-compatible" is

a "bit stretched," with values of 2.5 VDC seen for Vm(max).

Additionally, some CMOS devices have a few input pins
that will have input levels which need to be driven by logic

signals that effectively switch from rail to rail. This, for

example, is often the case for clock signals.
The trend with new logic technologies is to move to

smaller feature sizes. For a number of reasons, including

reliability, this has resulted in a lower supply voltage and

reduced output voltage swing. For example, for 0.35/am

feature-sized technology, supply voltages of 3.3 VDC are

typically used; for 0.25/am technology, a 2.5 VDC supply
is used; and with the 0.18/am technology that will be

coming soon, a supply voltage of 1.8 VDC will be used. As
such, many of the new devices have limited output voltage

swings, incapable of driving inputs on existing devices with

adequate noise margin. In some cases, there can be a

worst-case negative noise margin. While it was relatively

straightforward to design mixed technology systems with
5V CMOS circuits that have true TTL-compatible inputs, in

today's circuits with low voltage CMOS devices each
interface must be individually checked.

H. TMR Structure

To increase the SEU hardness of a circuit, designers can

employ triple modular redundancy (TMR) to effectively

harden the flip-flops [10]. An incorrect application of this

technique is shown in Figure 26. In this circuit, the

Ka_ 15 A4

designerhadaregisterthatwouldholdastatevalue.While
thecircuithadthreeredundant flip-flops and a correct voter,

the reliability is poor. The operation of this circuit would

load a value into the three flip-flops. However, there was

no provision made for "scrubbing" upsets for the TMR

triplet, either automatically in hardware with a free running

clock, as described in [10], or in software, by reloading the

values at a sufficiently high rate. Therefore, this circuit,

although having a higher MTBF due to SEUs as compared

with a single flip-flop, will eventually fail.

I. Races

The circuit shown below, in Figure 27, is an example of

a race. Although signals B and C are both generated

synchronously from the 2 MHz clock, they re-converge on

one flip-flop. At that point, tsu and tH can not be guaranteed

and reliable operation can not be assured. Based on the

delays in the different paths, the device may operate

functionally in the laboratory and test environment with the

amount of margin unknown. This circuit may fail in flight

as relative delays may change as a function of life effects

and degradation due to radiation.

-L =

i - i .,, _

. _.Jf

gsD

Figure 26. TMR configuration without scrubbing. This
register is loaded with no provision made for scrubbing
SEUs either in hardware with a free running clock and
feedback or by software, by reloading the register at
sufficiently fast intervals.

A _D _; ,_ C

Figure 27. Example of a logic race. Signals B and C both
originate synchronously from signal A, a 2 Mttz clock. The
two signals, however, have a race and tsu and tHcan not be
gT_aranteed to be met.

IV. LOW-LEVEL SOFTWARE

A. Clock Skew Rev&ited

Section III-B discussed problems with clock skew from a

low-level hardware perspective. We revisit this topic,

showing more clock skew problems, with software as one

of the contributing factors.

1. Elimination of Buffers

Referring back to Figure 12, we see the designer's

intent to "solve" a clock skew problem by inserting a buffer

between two sequentially adjacent flip-flops. Of course,

this is not guaranteed to work. Additionally, by not

understanding the design software, the implemented circuit

did not match what was desired. An optimization phase in

the software, added with an update to the back end design

package, determined that the elimination of the buffer

would leave the circuit logically unchanged and take fewer

resources. Clearly, the circuit would be electrically changed

and the designer was unaware of this. To force this

particular set of design tools to keep the buffer in the
circuit, an attribute named PRESERVE must be attached to

the net driven by the buffer.

2. CAE Software Generating a Clock Tree

The following VHDL code implements a 32-bit shift

register and is time. Depending on the particular synthesizer

and it's settings, it may produce a circuit with an excessive

amount of clock skew. A schematic of the circuit generated

by the synthesizer is shown in Figure 28, showing a

structure not intended by the designer.

Library IEEE;

Use IEEE.Std_Logic_l164.All;

Entity Skew Is

Port (Clk : In Std_Logic;

D : In Std_Logic;

Q : Out Std_Logic

End Skew;

) ;

Library IEEE;

Use IEEE.Std_Logic I164.AII

Architecture Skew of Skew Is

Signal ShiftReg :

Std_Logic_Vector 31 DownTo 0)

Begin

P: Process (Clk)

Begin

If Rising_Edge (Clk) Then

Q <= ShiftReg(0) ;

ShiftReg (30 DownTo 0)

<= ShiftReg (31 DownTo i) ;

ShiftReg (31) <= D;

End If;

End Process P;

End Skew;

Katz 16 A4

+:+'" •i • ', li_'l.... ,• !': . ; !i +I •

Figure 28. Logic synthesizer can generate circuits with
excessive clock skew. Depending on the synthesizer and its
settings, the CAE software can generate logical structures
that are unacceptable. This circuit fragment is part of a
shift register generated from standard VHDL code.

B. VHDL "Interfaces"

The interface to a block of logic defined by VHDL code

is defined in the port statement in a VHDL entity.

This only defines the linkages between a block of code and

other parts of the circuit. The behavior of the logic is
defmed in a structure called the Architecture. The

section of code below, simplified from the version that

appeared in a flight design, appears to be logically correct.
The circuit clescription is written in an elegant fashion,

using a Boolean value to represent the logical output of this

block. This is similar to how one would program in a

typical high level programming language.

Library IEEE;

Use IEEE.Std_Logic_l164.All;

Entity Bool Is

Port (X : In Std_Logic;

Y : In Std_Logic;

Z : Out Boolean

End Bool;

);

Library IEEE;

Use IEEE.Std_Logic_l164.All;

Architecture Bool Test of Bool Is

Begin

P: Process (X, Y)

Begin

If (X = Y)

Then Z <= True;

Else Z <= False;

End If;

End Process P;

End Bool Test;

This synthesized circuit, however, may not be logically

correct. For the flight circuit, the Boolean signal was

mapped to different logical values by different versions of

the same VHDL logic synthesizer. A careful look at the

VHDL specification and packages shows that there is no

requirement to map either True or False to any particular

value. By upgrading a synthesizer during a flight project,
from the same manufacturer, an error was introduced since

the mapping of True and False had changed. This was
not documented nor was it required to be; the synthesizer

still legally met the requirements of VHDL.

C. High-level Design Flow

In this section, we examine several cases where the

designers relied excessively on high-level software tools.
While doing this, operating at a higher level of abstraction,
it was felt that there was no need to understand the lower

level architecture and the details of the electronics. The

CAE software would properly take care of the details.

1. Case Study 1 - Memory Controller.

The flow diagram shown in Figure 29 was the path

taken in the design of a memory controller for a command

and data handling (C&DH) system. Since it was a critical

system on the spacecraft, there was a reliability requirement

that the design be immune to SEUs at a level of
37 MeV-cm2/mg. The designer had no experience and little

knowledge of the Act 2 target technology and relied on the
software tools to take care of the detailed implementation.

The circuit was logically correct and was felt to be reliable.

SEU Requirement: _ k_ N/W /

LETTr I > 37 MeV-cm2/mg

CHIP

Figure29. High-level design flow. An FPGA was designed
solely using high-level design tools without knowledge <9]
the underlying architecture nor the radiation characteristics
of different structures. The software mapped the logical
design onto hardware structures that Coldd not meet the
SEU requirement•

The CAE tools, which are commercial in nature, tend to

map structures "efficiently." For the Act 2 architecture,
there are two basic methods for flip-flop construction. The

first uses a hard-wired cell, referred to as an S-Module,

which is fast and compact as shown in Figure 30A. The

second method uses feedback through the routing network

and combinational logic structures, with a simple example

in Figure 30B. This method consumes more resources and

has less system-level performance.

Katz 17 A4

DO0

DO1

D10

Dll

Sl

Y

SO

.__ CLRCLK
A

-- OUT

Up to 7-input funclion plus D-type flip-flop with clear

Figure 30A. Hardwired flip-flop in a commercial FPGA

architecture. The CAE tools chose to map flip-flops onto a

hard-wired flip-flip in the Act 2 architecture for

compactness and speed. This flip-flop is SEU soft.

., i • wi

Figure 30B. Flip-flop made from combinational logic
resources. A standard macro in the Act 2 architecture, this

flip-flop construction is often selected for it's

radiation-tolerant characteristics. The feedback for each

latch goes through antifuses and the routing network.

The radiation performance, with respect to Single

Event Upsets, however, differs substantially with respect to

flip-flop construction. The hard-wired, S-module based

devices are considered quite soft with a low LETTH and a

high cross-section. The routed flip-flops perform better and

are considered SEU tolerant. Data for the

commercial/military A1280A and the "hardened" RH1280

clearly show the difference, as shown in Figure 31. Neither

flip-flop construction would meet the system's original

upset requirements. For this example, either a specification

change, part change, or a TMR structure would be required.

With the design and analysis divorced from the physical

implementation and architecture, the design was unaware of

the performance of the circuit in the actual flight

environment. After analysis, C-module flip-flops were used

in a redesign and considered adequate for the mission.

I0"_ .

- 10 -

.g-

"_ 10"r"

_3

2 lffS-

lO-g

,1_- _.j.O
/ t _.e

/4 " -J" J_
e 4 . _ J

/ /
K /

""_" "_t'/ [_ RH1280

A 1280A

• i i

20 40 60

LET (MeV-cm2/mg)

8o

Figure 31. SEU data summary for two members of the

Act2 family. The SEU performance of two types o[

flip-flops are shown, with the higher cross-section and

lower LET for the "hard-wired" storage elements•

Flip-flops made from combinational logic using the routing

network perform substantially better. Neither of the two

flip-flop structures could meet the project SEU

requirements.

2. Case Study 2 - Motor Controller

Similar to the discussion in the case study above, this

designer relied on a software tool to replace a detailed

knowledge of the target architecture. In this particular case,

the target architecture was an Act 1 device with the designer

familiar with an Altera device and its tools. The design

flow used for this project is shown in Figure 32 and relied

on a netlist translator for the detailed implementation of the

A1020 circuit. No independent steps were taken to verify

the correctness of the translation, with the translated netlist

I ActelNetlist

Figure 32. Design flow using netlist translation. An Altera

design was mapped to an Act I device using CAE software.

The software created logical structures unsuitable for the
space flight environment.

Katz 18 A4

• ' " "+ igi,_,+ Or hal

"Optimized"

Figure 33. Flight design, before and after netlist
translation. The translation software took a single flip-flop
in the Altera design and mapped it into two flip-flops in the
AI020 design. This circuit, although logically correct, is
unacceptable since it is used both as a synchronizer and for
control of high motor currents. Differing values in each o/
the two flip-flops resulted in an over-current condition.

directly input into the back end place and route tool.

The circuit failed and an analysis was performed.

Figure 33 shows a sub-circuit, first as designed in Altera
technology and below, how the CAE tool implemented it in

the A10]_0. The output of the flip-flop, and its complement,

are used as part of a driver circuit for a motor controller.

Logically, in the Altera circuit (top), Q and QN must have

opposite values. This is required for safety since if both

outputs are asserted there will be a high current condition.

By inspection, we see that the safety provided by the

original circuit is now gone. It is physically possible for

both Q and QN to be simultaneously asserted. This can

happen several ways. First, an unintended transient may
upset the circuit. In general, designs that are sensitive to

this environmental effect should be avoided. Additionally,

the input to the flip-flop is asynchronous. Since the routing

delay to each of the two flip-flops is different in the A1020

and tsu of each flip-flop can never be identically mapped, it
is conceivable that the two flip-flops will both be Q and Qlq

will have the value of logic '1'. This is what happened in
test. There is an additional concern, since this circuit was

intended for a high-radiation environment, that a SEU could

force both outputs to be driven high. The CAE software did

not "understand" the implications of the asynchronous input
for this circuit nor did it take into account SEUs. By

shielding the designer from the implementation details,

engineering was unaware of the risks of this circuit until a

failure was observed on the flight hardware.

D. Replication and Timing Optimization

The loading on a particular signal can affect system

performance if it is in the critical timing path. Another
factor is where the loads are located, in particular for

FPGAs which may have a relatively expensive routing
network. For these nets driven by a combinational gate, one

Block A

• r , •

I Bltxk B I

I I

Block A

: Ira 6 ,

Block B I

."'-

I

Figure 34. Logic replication to improve performance. CAE
software can create multiple copies of flip-flops to improve
system timing. This has been observed both in synthesis and
in back end software.

standard technique is to simply replicate the gate. The load

will be split between the different copies and each gate will

be located to optimize system goals. Similarly, for

sequential logic, the output of a flip-flop may be in the

critical path. Modem design software, such as logic

synthesizers and back end place and route tools, may

automatically replicate sequential logic. Each tool behaves

differently and has settings that affect its performance. A

generic schematic of this is shown in Figure 34.

As shown above, there is a logical equivalence between

the two circuits. Electrically, however, they can perform

quite differently, particularly in the space environment. In
the case of an SEU, different parts of the circuit will see
different values for the same variable. The CAE software

does not put in any checking circuits for error detection or
correction. Finally, since the replication does not appear in

the logical definition of the circuit, either schematic or HDL

code, the design engineer can not add logic for detection or
correction efforts. Each tool needs to be configured

properly and constrained to prevent replication when its
effects could be harmful. Control of the synthesizer may

have to be performed indirectly as there may not be a global

command for turning off the replication feature.

E. Robust Design and Lockup States

A clear advantage of designing in an HDL such as

VHDL is the ability to rapidly describe finite state machine

(FSM) behavior using names for the states. This allows the

Katz 19 A4

Reset

Figur_ 35. "Simple finite state machine. CAE software may
implement logic that has lockup states.

Figure 36. One-hot implementation of a simple FSM. This
circuit, generated by a VHDL synthesizer, produces an state
machine implementation with lockup states.

design engineer to concentrate on what the FSM is doing,
not how it does thing. One of the tasks that a tool such as a

VHDL synthesizer performs is called state assignment,

where different physical states are assigned to the designers

logical states. One popular and preferred encoding method
for FPGAs is referred to as "one-hot encoding." Using this

technique, there is one flip-flop for each state and exactly

one flip-flop is set. An example of this, for the FSM shown

in Figure 35, is shown in Figure 36. This circuit was
generated by a commercial VHDL synthesizer.

Although this machine-generated circuit is logically

correct, a close examination shows that electrically, for

many space-borne applications, it is unacceptable. Clearly,

this circuit has lockup states. These states may be entered
as a result of noise or other transient or an SEU. It is not a

robust circuit for a critical application.

The lockup states can be broken down into two classes.

First, if the flip-flop that is set gets reset, then all flip-flops
in the FSM implementation will be zero and the FSM will

be stuck with no logic to transition into any valid state.

Alternatively, more than one flip-flop may be set. Again,

there is no logic to force the state nmchine into a valid state
or indicate an error.

At first glance it would appear that a VHDL solution

would easily cover this situation, by using the Others
clause in the Case statement. However, this VHDL

construct only applies to the set of logically defined states in

the system; it does not apply to the set of physical states

represented by flip-flops in the implementation. As such,

the Others clause would ignore any physical error states.

This analysis can be extended and it can be shown that

other FSM implementation schemes, such as binary or gray

encoding, are susceptible to the same lockout problem.

This is discussed in more detail in [19].

One synthesizer vendor has implemented a "safe" mode

that detects an illegal state and then takes corrective action

by forcing it into the home state. Logically, this appears to
solve the problem. Electrically, an examination of the

implementation revealed that the reset signal forcing a
recovery is clocked on the opposite edge of the clock! This

can easily lead to timing problems if the design engineer is

not aware of the implementation. Again, just typing in a

command to a CAE tool, telling it to make things "safe"

does not guarantee a good quality circuit.

Figure 37. Modified one-hot implementation. This circuit
is more robust than the implementation shown in Figure $9.
Results vary as a fitnction of synthesizer, revision level, and
settings. Note that this implementation uses the all O's state
as a legal state.

The circuit in Figure 37 is in a modified one-hot

topology that is more robust than the one shown in

Figure 36. In this case, the state assignment algorithm used

the all O's state as a legal state with no outputs generated

during that state. An examination of the next-state

equations shows the improved robustness of this circuit.

Working from left to right, we denote the three

flip-flops FF1, FF2, and FF3. First, for the all O's case, FF1
and FF2 will be cleared while FF3 is set, since the three

inputs to the AND gate are inverted. Additionally, FF3 will
not be asserted for any other combination of flip-flop

values. FF1 will only be asserted if it is already cleared (it

can not stay high for two consecutive state times), FF2 is
cleared, and FF3 is set. It can not be set if two or three

flip-flops are set, eliminating that problem. Lastly, we

examine the next-state equation of FF2. FF2 will be set if it

Katz 20 A4

is already cleared and if FFI is set. The state of FF3 is a

"don't care." Looking closer at the case of FFI and FF3

being set, we see that the following will occur. First, FF2

will be set, as described above. FF1 will clear, since it's

next-state equation forces the flip-flop to clock in a logic '0'.

In similar fashion, FF3 will also clear. This leaves the state
machine in a valid state.

It is difficult to generalize how CAE tools will perform

the task of state assignment and FSM generation. The

results vary based on the tool used, its settings, and even the

code that is input to it. The tools are uncontrolled and their

algorithms are not documented. Frequently, this results in a

"try it and see what happens" approach to what is normally

called engineering.

If tools are used in this fashion, their output must be

understood for critical applications. Normally, design

engineers will ensure that their state machines do not have

lockup states. That is one of the basics taught in early logic

design classes. By delegating detailed design work to CAE

software, we ironically find that CAE vendors are driven by

so-called "quality-of-results" which generally mean

resources and speed, not the quality of the logic design
itself.

F. Correct by Construction

It is tempting, when using tools such as macro

generators and good HDL synthesizers, to assume that their

output is "correct by construction." For HDL code, the

design is often simulated first at the source code level,

showing that the design is logically correct. This section is

a bit general and is included as a reminder and specific

analyses are not included.
However, it is felt that the synthesized netlist must be

fully synthesized and subject to timing analysis. For
example, using a known reliable macro generator, it has
been found that under certain conditions it will produce a

logically incorrect netlist, even when the target family

remains unchanged. Examples include designs which fail

the design rule check, outputs that are inverted, or incorrect
terms, when generating linear feedback shift registers. For

VHDL synthesis, errors have been reported in the

inferences of latches vs. flip-flops, for example. There is

enough evidence of problems in design software that full

simulation and timing analysis must be performed.

Additionally, the behavior of CAE tools is not always

consistent throughout revision levels with "bugs" and

different algorithms occasionally introduced; complete

re-verification of a flight design is required when tools are

upgraded.

G. Delay Generation

The circuit shown below in Figure 38 was intended to

create a delay. This is in general a poor circuit and the lack

of understanding of the CAE software caused the delay not

to meet the designer's intent. Upgrades to the CAE software

changed the default behavior. The new version would

analyze the circuit, determine that the inverters were

logically not required, and eliminate them. A record of this
is available for export to an auxiliary file and no direct

notification is given to the user. Additionally, early

versions of this software would fail to report the eliminated

logic to the report file. The optimizer's behavior can be
over-ridden by use of an attached attribute. The designer

was unaware of this.

, i:t'': r , [::":' ! • 2 r L :" 'r] U -

Figure 38. Delay generation. This circuit (not a
particularly good one) failed to achieve the delay intended
by the designer. A recent revision of CAE software changed
its default behavior and the optimizer eliminated the
logically unneeded gates.

V. HIGH LEVEL PRINCIPLES, TECHNOLOGY

A. Specifications - General Principles

Many digital systems are designed without any

specification being produced. Some causes for this are
discussed below, in Section B. Obviously, this promotes

miscommunications between various project personnel and

makes a thorough analysis impossible. This often leads to a

development by test, rather than using test to verify the
analysis. For many digital systems, it is impossible to

demonstrate flight-worthiness by a test program.

Additionally, the test campaign must be, to a certain extent,

ad hoc, since there is no specification. Similarly, for

expedience, specifications are often ignored, the formalities

of maintaining it get in the way, and changes are made

quickly and late in the game. This often leads to problems,

as the full impact of the change is not properly assessed,

leading to further changes in a time frame that has grown

shorter. As many of the faults documented here, this is

unfortunately a quite common practice.

Katz 21 A4

B. Specifications - Gate Array Operation

Incorrect

The development of gate arrays is typically an

expensive undertaking. The non-recurring engineering
(NRE) charges are typically quite high from the foundry.

The second contributor to the high cost is, in part, the first

reason for high cost. The large NRE requires that there be a

minimum of developmental errors, with a first-pass success

a crucial goal. While an FPGA in a low-cost package has a

cost of approximately $25 to $50, the NRE for a hardened

gate array can be $50,000 or more. Secondly, an FPGA can

be "burned" in under an hour; the "spin time for an ASIC is

measured in months. First-pass success is crucial for both

budget and schedule.

The reasons for the failure of this gate array are all

common sense items. Yet, they did happen here and are,

unfortunately, common in the industry today. A contributor
to the failure was that there was no continuity of personnel.

A detailed discussion of this is outside the scope of this

paper, although the authors note that there are many reasons
for this, many of which are manageable. Although this

ASIC h_d a specification, changes to the specification were

not frequently documented. Why did this happen? A
contributor to this was another common problem, features

being added and deleted during development. While some

changes are inevitable during development, frequent

functional changes promote problems with communications

between various personnel, particularly if personnel are

changing during a project. Additionally, as changes are

being made, it is difficult to assess all of the impacts of the

change to a complex circuit, particularly if the original

designers have moved on, and subtleties are not fully
documented and understood. Lastly, keeping a

specification up to date is a lot of work. If the environment
is such that changes are constant, then personnel are likely

to put off updating the specification until things are stable.

As we have witnessed, some projects never approach a
stable state.

C. Specifications - FPGA Updates Delays

Projects

These cases, too, is based on problems of proper

specification. In the first case examined, software changes

and drifting software requirements were forcing changes of

FPGA requirements. Clearly, this is a system engineering

and management issue. In the second set of cases grouped
here, the system requirements themselves were not stable

and the FPGA designs had to be updated. This environment

promotes failures, mad efforts to chase down and eliminate
bugs, and a constant tension. It is an environment that

promotes errors. FPGA designs should work with first-pass
Success.

D. Reliance on Simulators - General Principles

Logic simulators started to become popular in the early

1980's to verify hardware designs prior to construction. The

algorithms in the simulators rely on models, either

constructed by the simulator vendor, a third party vendor, of
the users themselves. Often model parameters are modified

by the design organization to account for environmental

conditions unique to a particular mission. Over the past

several years, hardware design language (HDL) simulators

have become popular, either executing VHDL or Verilog
code for verification. The VHDL code, for example, will

having timing parameters extracted from the model of a

gate array, after the place and route operations. Thus, both

logic simulators and HDL simulators can be used for

functional and timing verification, in principle. The quality

of the results depends on the fidelity of the models and the

capabilities of the simulators. Another popular design

methodology is to use the logic or VHDL simulator for
functional verification and a static timing analyzer for

timing verification and the determination of adequate

margins.
There are several high level issues with using

simulators for verification, that can lead to errors. These

include the following:

• Run time limited

• Number of test vectors

• Test vector/bench generation

• Number of operating modes

• Time for modeling external circuitry
• CAE software limitations

The generation of test vectors (logic simulator) or test
benches (HDL simulator) is a large amount of work. This
has been estimated to be from 40% to 75% of the

development effort. This, coupled with the limitations of

the software, must be addressed up front in a development

program.

E. Simulators - Case Study 1

An arithmetic error surfaced in a design from a latent

logic error. The entire circuit was not properly simulated
and the error was detected in hardware. There were two

causes for this error. First, the simulator being used could

only simulate for 1 ms; the circuit had a 125 ms cycle time.

Secondly, a full simulation of all combinations of inputs

was not practical, as there were too many combinations.

Frequently, either test vector generation or test runtime can

be limiting factors in a simulator-based verification effort.
While 1 ms is short for a simulator's limit, modem, popular

logic simulators have shown to have time limitations that

were considerably less then the cycle time of the hardware

under simulation. Additionally, the relative slow speed of

Katz 22 A4

simulationmaymakecompletetestingimpractical,forsome
circuits.

F. Simulators - Case Study 2

For this case, a design originally built in an FPGA was

converted to an ASIC. The development methodology did

not have any gate level design reviews at any stage of the

project and the project relied on the simulator to catch the

errors. Unfortunately, the test vectors from the FPGA

version of the implementation were not run on the ASIC

version. Analysis of the vectors showed that the test vectors
would have detected the fault present in the ASIC version

of the design.

VI. CONCLUSION

This paper has discussed and analyzed a large number

of failures in spacecraft systems. Clearly, the majority of

these errors should have been caught earlier in the design

cycle. Although not an exhaustive list of failures, we have
included a select set to illustrate general principles and

share experiences with designers of future logic systems.

It is noted that the space industry has seen large

numbers of failures over the past few years resulting in
losses of billions of dollars. Are these industry failures

related to each other in any way? Is there a common root

cause to these failures? Perhaps the failures are simply a

statistical "blip." This is an open question and various

committees and study groups are exploring the issue. It will

be interesting to see what parallels, if any, exist in the

failures of the space community in general and the logic

design community in particular.

In discussing logic design, we grouped the failures into

three general categories. These were high level principles

and technology, low-level hardware, and low-level

software. Many of these errors seem obvious; yet, they are

seen frequently and should be discussed. Some errors are a
result of the injection of the latest commercial technology,

originally not designed for high reliability systems.
At the highest level, we saw many "Morn and apple

pie" rules violated. For example, the lack of stable

specifications, continuity of personnel, and detailed reviews

remain. Reviews in particular are worthy of additional
mention. Sometimes the detailed design review is skipped;

other times, the review consists of perhaps an hour or so of

discussion, with the reviewers being forced to "sight-read"
the material in "real-time." This class of review is sufficient

only for checking off a so-called action item that needs to
be done. This can not replace a solid, detailed review.

Lastly, for errors of this class, it is obvious that simulations

and testing can not replace proper design and analysis. As

was shown, some circuits can not be verified by test. In
addition, it is difficult to cover all cases with simulations.

Furthermore, the simulators and models are limited in their

fidelity and often aren't a true model of the physical circuit
and all of its characteristics. Understanding the limits of a

simulation is critical to the proper use of this tool.

At the lower levels, both hardware and software, most
of the errors have a common root cause. These errors are

typically relatively simple, when properly explained. The

circuits in question are not overly complex and there is little
mathematics involved. Indeed, by penetrating the design,

going to yet lower levels, the flaws become rather obvious.

One technique for dealing with design complexity is

abstraction, with the implementation of lower levels being a

"solved problem." Not understanding the underlying

technology is the root cause for most of the errors analyzed

in this paper.
There are a number of reasons that we can postulate for

these problems, which seems to be of almost epidemic

proportions.
First, the logic industry tends to try to shield the

engineer from the lower level technology details. This, in

principle, enhances productivity and to no small extent is a
function of marketing departments. For example, we see
one manufacturer who claims on their world wide web site

that their parts "are instantly operational on power-up."

This is most definitely not the case. Another vendor marks

their parts as "radiation-hardened" although they are
considered radiation-soft with the MTBF for upsets in

control bits is measured in hours. Synthesizer vendors

promote device independence if the engineer designs his

logic using an HDL and lets the synthesis tool generate the

logic for him. The algorithms that the synthesis tool uses
are not published or controlled. Additionally, for some
newer models of FPGAs, vendors are no longer providing

libraries for schematic tools; therefore engineers lose direct

control of the hardware as schematic capture is not

supported is being discontinued. As a result, one must code
in an HDL and let a third-party synthesis tool generate the

logic. CAE tools do not always produce good, robust

circuits for high-reliability applications.
Management plays a role in today's logic design in a

number of ways. First, by observation, the line manager is

often not technically active nor up to date on the technology

used in flight programs. Consequently, supervisory

personnel often can not provide proper detailed guidance

nor be able to quickly spot flaws and point out solutions.
This has also been noted in other technical fields [20].

Many managers today are not promoted for technical and

leadership skills. In a welding shop, one will find that the
foreman is by far the most skilled welder and can quickly

decide on how to solve a particular problem; for logic

design, that is not the case. The leader is more than likely

to be an administrator. Virtually all of the designs that we

are aware of have been subjected to a number of design
reviews such as the traditional PDR and CDR and

sometimes a "peer review." Short presentations have

Katz 23 A4

replaced true independent detailed reviews. While this type

of review can catch some errors, it is often insufficient, as

the details of a design can not be adequately reviewed in a

presentation lasting perhaps 15 minutes. Another factor is

the training of logic designers. Engineers are frequently

assigned positions not based on skill and experience. As a

result, there are inadequately supervised engineers who are

not aware of basic concepts such as metastable states and

the SEU performance of the devices that they are using.

Engineers must probe farther and deeper into the

technologies that they are using. The devices in use today

have far more power than the devices used 30 or 40 years

ago. While early digital electronics was constructed from

simple components, that is not the case today, with device

complexity orders of magnitude higher. Understanding the

technologies and, just as importantly, the tools, is

fundamental to the design and construction of reliable

systems. The failure to penetrate the technologies and

understand how they work, not just how to use them, is also

a fundamental skill that needs to be developed. A reliance

on readily available and seemingly powerful tools to

understand and manage the lower levels of the technology

will result in failure.

Lastly, there has been a lot of discussion of the effects

of strategic policies such as "faster, better, cheaper" or

"FBC." One can make a case that taking more time, having

more thorough reviews, and running more tests will help

reduce the frequency of errors. However, it is noted that

large, expensive programs also have had problems. Indeed,

the examples used for case studies in this paper came from

the most expensive programs as well as FBC programs.

Additionally, the designs came from industry, government,

and academic institutions. It is felt that the problem, or the

"disease," is widespread. No correlation has been found

linking logic design problems to the cost of a program or

the organization managing it.

REFERENCES

1. D. Branscome, et. al., WIRE Mishap Investigation Board

Report, National Aeronautics and Space Administration,

June 8, 1999.

2. R. Katz, Small Explorer WIRE Failure Investigation

Report, National Aeronautics and Space Administration,

May 27, 1999.
3. J. Oberg, "Why the Mars Probe Went Off Course," IEEE

Spectrum, Volume 36, Number 12, December 1999.
4. M. Williamson, "Satellite In-Orbit Failures - A Rising

Trend?" Via Satellite, December 1998, pp. 18-24.

5. W. Larson and J. Wertz, Space Mission Analysis and

Design - Second Edition, Microcosm, Inc. and Kluwer

Academic Publishers, Wirth, (1992) p. 709.

6. T. Lewis, "Primary Processor and Data Storage Equipment
for the Orbiting Astronomical Observatory," IEEE

Transactions on Electronic Computers, pp. 677-687, Dec.
1963.

7. E. Hall, Journey to the Moon: The History of the Apollo
Guidance Computer, American Institute of Aeronautics and
Astronautics, (1996).

8. R.L. AIonso, H. Blair-Smith, and A.L. Hopkins "Some

Aspects of the Logical Design of a Control Computer: A
Case Study," IEEE Transactions on Electronic Computers,

December 1963, pp. 687-697

9. A. Sharma, Programmable Logic Handbook, McGraw-Hill,

(1998).
10. R.B. Katz, R. Barto, P. McKerracher, B. Carkhuff, and R.

Koga, "SEU Hardening of FPGAs for Space Applications and
Device Characterization," IEEE Transactions on Nuclear

Science, NS-41. pp. 2179-2186 (1994).

11. Reproduced from NASA EEE Links, Vol. 1, No. 4, October
1995

12. P. Alfke, "Two Simple Solutions for Tricky Problems, "Xcell,

Issue 34. pp. 54-55 (1999).

13. Xilinx, Corp., The Programmable Logic Data Book, p. 4-

46 (1998).

14. Actel, Corp., "A Power-On Reset Circuit for Actel Devices,"
FPGA Data Book and Design Guide, pp. 3-81 to 3-82

(1995).
15. IEEE Standard Test Access Port and Boundary-Scan

Architecture, IEEE Std 1149.1a, IEEE Computer Society

(1993).
16. R.B. Katz and J.J. Wang, "Use of SX Series Devices and

IEEE 1149.1 JTAG Circuitry," August 17, 1998.

17. J. Greene, E. Hamdy, and S. Beal, "Antifuse Field

Programmable Gate Arrays," Proceedings of the IEEE, Vol.

81, No. 7. pp. 1042-1056 (1993).

18. Quicklogic Corp., Databook, page 2-4 (1996-97).

19. R.B. Katz, J.J. Wang, J. McCollum, and B. Cronquist, " The

Impact of Software and CAE Tools on SEU in Field

Programmable Gate Arrays," IEEE Transactions on Nuclear

Science (1999).

20. J. Oberg, "NASA faster, cheaper, but not better," USA Today,

December 7, 1999.

21. Katz, R., J. Wang, J. McCollum, and B. Cronquist, Current
Radiation Issues for Programmable Elements and Devices,

IEEE Transactions on Nuclear Science, 1998.

Katz 24 A4

APPENDIX A

A. Basic FPGA Architecture

This Appendix will provide a basic overview and

illustrate some of the key differences in architectures and
configurations of three FPGA technologies. A detailed
review of FPGA architecture is not included here and the

reader is referred to [9] for additional information. Because

of space limitations, the architectures and implications of
different application specific integrated circuit (ASIC)

technologies are not included in this section as well as other
FPGA devices families that are still actively being used.

There are many features of FPGAs and ways to classify
them. In this section will shall discuss the

configuration/routing mechanism, the array topology, and

the core logic cells for the AT6K, SX, and XQR4000XL
families. These devices are the latest targeted at space flight

applications.
FPGAs can be classified into re-programmable devices

and one time programmable (OTP) categories. The re-
programmable devices may be programmed many times
and either volatile SRAM or a non-volatile EEPROM

technolo_gy cells holds the configuration. Routing is
achieved by l_aving the output of the configuration memory
bias an n-channel FET that either makes a connection or

isolates routing tracks. SRAM cells in current FPGAs are

susceptible to soft errors from either heavy ions or protons.
The planned hardened version of the AT6K and the

XQR4000XL are configured via SRAM cells. OTP FPGAs
typically use antifuses for configuration, either an oxide-
nitride-oxide (ONO) structure or a metal-to-metal

configuration. Signals pass through programmed antifuses,
which connect or isolate routing segments. The antifuse is
normally in the off or high impedance state; programming a

metal-to-metal antifuse results in a low-impedance
connection, typically around 25 ohms. Radiation-hardened
antifuses have been recently developed and verified in SX-

series devices [21]. Configuration memories also are used
to configure logic functions, input/output parameters such
as drive strength, and other selectable parameters.

The FPGA core consists of logic and routing resources

with different manufacturers choosing different topologies.
The type of configuration memory heavily influences this
decision as SRAM cells, pass transistors, and ONO

antifuses all require structures built into the integrated
circuit substrate. These devices may use a channeled
architecture as shown in Figure A-1 or a tiled architecture
(AT6K) with both horizontal and vertical channels. Metal-

to-metal antifuses can be located above the logic resources
with the routing channels eliminated, if a three or more

metal layer fabrication process is used. This is done on the
SX series, with the switches located between metal layers 2
and 3.

The logic cell structure also differs amongst the
different manufacturers and is frequently updated as FPGA
architectures mature. One key feature of the logic block is

Logic Module

Routing Segments

Logic Module

Routing Segments

Logic Module

Routing Segments

Logic Module

Figure A-I. Generic structure of a channeled FPGA
architecture. FPGA cores consist of logic modules

and routing resources with input�output blocks
typically located around the edges (not shown). Other

topologies include tiles, with vertical and horizontal
channels and sea of modules, with the routing
resources located above the logic modules.

its granularity. The XQR series has a relatively coarse

granularity, with multiple look up tables (LUTs) and
outputs. The SX series, for example, is relatively f'me
grained, with two simple modules, the C-Module for

combinational functions, and the R-Cell for storage. In
general, devices with larger delays through the routing
system (re-programmable devices) have a coarser grained

logic cell. Modem devices such as the XQR and SX series
devices also employ "direct connects" for dedicated, high-

speed signaling between modules that do not pass through a
programmable switch. The XQR makes use of this for

carry propagation in adders, for example, with a typical
delay of 300 psec per bit.

Two basic techniques are used for the logic. In the
first, used by the XQR series, small blocks of pre-loaded

SRAMs are used as look up tables (LUTs) with module
inputs providing the address. Additionally, these LUTs

may be reloaded during device operation, providing a
variety of memory configurations for the application. Not
shown in the figure below is dedicated high-speed carry
logic, to speed arithmetic operations. In the second basic

technique, hard-wired logic is used. The AT6k uses what is
essentially a half-adder function. The SX series has two
types of modules, one for combinational logic based on a

multiplexer, the other a storage cell with an enable function.
Block diagrams for several architectures are shown below in
Figures A-2, A-3, and A-4.

B.FPGA Device Usage

ASICs and FPGAs are available, or will be available, at

different reliability levels, ranging from inexpensive
commercial-off-the-shelf (COTS) devices to high-
reliability, radiation-hardened devices as well as different
devices speeds, capabilities, and configurations. This

section will give an overview of these capabilities and
trade-offs between different FPGA device families.

Katz 25 A4

DO

D1

D2

D3

m

Sa Sb

A1 31

PSETB
/

Direct _ " I I

Connect - _ D Q I Y
Input

CLKA, CLRB

InternalLogic J J
CKS CKP "

Figure A-2. SX Series C-Module (above) and R-Cell

(below)• The multiplexor-based C-module can implement

over 4,000 logic fitnctions. The R-cell implements a flip-

flop with enable. Not shown are routing resources which
connect C-Modules and R-Cells into clusters and super-

clusters supporting direct connects have a routing delay oJ

1O0 psec and fast-connects having a delay of 400 psec.

The Actel OTP devices have been the primary FPGA

technology used in space flight systems to date. In general,

they can be regarded as radiation-tolerant and are used for a

variety of control and data processing applications. The

members of the Act 1, 2, and 3 families are considered

relatively small, with the largest flyable device consisting of

about 20,000 "PLD Gates."

The newer, high-speed, low-power SX and SX-A series

has devices in various stages of development. By modifying

COTS technology, greater than 100 krad(Si) total dose

performance levels have been achieved, with some SX-A

prototypes exceeding 200 krad(Si). There is no single event

latchup (SEL) and there is a radiation-hardened antifuse for

configuration. The flip-flop performance of the basic

device is considered radiation-tolerant; modified versions

via software have shown radiation-hard performance levels,

at the cost of some speed and logic resources. A radiation-

hardened flip-flop is being incorporated into the next silicon

revision. Since these are OTP devices, they obviously can

A N AE AsA w "1"

\llill

J

i
F

AAAA

"1"_ B s BE BN

\llllt • 2

'o" _

 -,_cLc:F

B B B

LNSl-_ LNS2

LEW1 -_ ._ LEW2

Figure A-3. Cell structure of the AT6k Series device• The

four sides (north, south, east, and wesO are functionally

identical making each cell symmetrical. The clock and

reset inputs are common to a column• The)(OR and AND

functions can directly implement a half-adder. Pass gates

may be used as routing resources "turning" signal lines

(e.g., LNs I to Lewj). These are shown in the right hand side

of the figure•

'_E7

' I

_sD .

Figure A-4. Configurable Logic Block (CLB) of the

XQR4OOOXL series. This coarse logic module provides

functionality by accessing two 4-input LUTs and one 3-

input LUT The multiplexers are controlled by

configuration bits loaded before operation• The LUT may
be used as user memory devices• Dedicated high-speed

carry logic and its direct connection to adjacent modules in
the same column are not shown. Limited routing and signal

buffering is possible via the "Bypass" path.

not be used in applications that require a full device

reconfiguration.

The Xilinx XQR4000XL FPGAs are a subset of their

commercial XC4000XL series of devices. By special

processing, including a 7 _tm epitaxial layer to prevent SEL,

the device is usable for certain classes of space-flight data

processing tasks. The XQR4036XL has shown 60 krad(Si)

total dose performance and no SEL, suitable for a wide

range of space science missions. The flip-flop designs in

the XQR series, however, are considered radiation-soft and

Katz 26 A4

must be carefully applied to particular missions. The
XQR4036XL has a capacity ranging from 22,000 to 65,000

gates; the largest device in the series, the XQR4062XL,
ranges from 40,000 to 130,000 gates. High effective gate

counts can be achieved by the use of LUTs as on-chip
memories, as described below. Note that for SX and

AT6010 devices, on-chip SRAM must be assembled from

on-chip logic resources which is far less efficient at making
read/write memories.

The XQR device is configured by loading SRAM cells.
These cells control resources such as routing connections

and parameters such as output slew rates and input
thresholds. Additionally, they load small RAM blocks that

act as look-up tables (LUTs) which provide a great deal of
the logic power; another important logic resource in this

series is the dedicated high-speed carry/borrow logic.

Alternatively, the LUT may be utilized by user circuits as

on-chip RAM.
The last reprogrammable device to be discussed is the

planned AT6010/rhFPGA. Originally a commercial device
produced by Atmel, the design is currently being transferred

to a 0.8 gm, silicon-on-insulator (SOl) process at

Honeywell for radiation hardening. The device will be total
dose hard for most space science applications, with a

performance level of 200 krads(Si) and no SEL
susceptibility. Flip-flops, for both user and configuration
use, will have a minimum LET threshold of 30 MeV-

cm2/mg, which is radiation-tolerant; radiation-hard levels
are a design goal. These 5V devices are relatively small,

consisting of from 10,000 to 20,000 usable gates.

APPENDIX B

References for Metastable State Information

There are marly available references on metastable states. The list below is a partial listing of material that has been

collected. Please see http://rk.gsfc.nasa.g_v/richc_ntent/Genera_-App_icati_n-N_tes/mestab_estates/Metastab_eStates.htm
for more information.

• http_//rk.gsfc.nasa.g_v/richc_ntent/Genera_-App_icati_n-N_tes/mestab_estates/xi_inx_metastab_e-c_nsiderati_ns.pdf

• http://rk.gsfc.nasa.g_v/richc_ntent/Genera_-App_icati_n-N_tes/mestab_estates/xi_inx-metastab_e-rec_very.pdf

• http://rk.gsfc.nasa.g_v/richc_ntent/Genera_-App_icati_n-N_tes/mestab_estates/xi_inx-metastab_e-rec_very-2.pdf

• http://rk.gsfc.nasa.g_v/richc_ntent/Genera_-App_icati_n-N_tes/mestab_estates/meta-ti.pdf

• http://rk.gsfc.nasa.g_v/richc_ntent/Genera_-App_icati_n-N_tes/mestab_estates/cypress-__dmeta.pdf

• "Flip-Flops and Metastable States," CX Technology Design Manual, Chip Express, 1997, pp. 9-18 to 9-24.

• "Metastable States," The Art of Electronics, Horowitz and Hill, 1989, page 552.

• Daniel L. Stein, "Noise-Assisted Escape from a Metastable State," http://soliton.physics.arizona.edu/-dls/1.html

• http://www.ti.corn/sc/docs/psheets/abstract/apps/sdyaOO6.htm

Katz 27 A4

